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Introduction – Spatial Modelling
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Spatial Modelling

Spatial modelling is the art of constructing models – explanations – of
spatial variation of geographic phenomena.

Spatial modellers aim at constructing simple yet accurate models of the
spatial variation of geographic phenomena – given the available resources
and the intended application.

Spatial models (should) serve the practical purpose of producing the
spatial information needed to support many of our every-day decisions.
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Modern Spatial Modelling

Modern spatial modelling is based on using statistical models that
account for:

• the empirical correlation between environmental conditions and
the target geographic phenomenon

• the empirical correlation of the target geographic phenomenon
itself – autocorrelation

This is the mixed model of spatial variation
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Mixed Model of Spatial Variation

The mixed model of spatial variation can be represented as:

Y (s) = m(s) + e(s)

• Y is the target geographic phenomenon at spatial location s.

• m(s) are the fixed effects, the deterministic environmental
conditions – that can be modelled using a (linear) trend function

• e(s) are the random effects, the seemingly stochastic spatial
variation – that can be modelled using a covariance function
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Error and Uncertainty

Spatial models – such as the mixed model – are a simplification of
reality – they explain only a small part of the spatial variation of
geographic phenomena.

The outcome of any spatial model – a (digital) map – will always deviate
from the “truth”, i.e. be in error .

There are multiple sources of uncertainty in spatial modelling:

• Interpolation/extrapolation error

• Data errors (analytical error, sample design and size)

• Covariate errors (poor correlation with target phenomenon)

• Model structural error (linear or non-linear)

Today we will talk about sample design
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Spatial Sampling
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Sampling in Terra Incognita

The usual spatial modelling challenge:

1. Multiple geographic phenomena have to be modelled/mapped

2. We know very little about the form of the models of spatial variation
– Terra Incognita

3. Operational constraints limit sampling to a single phase

In the mixed model context, we need an efficient spatial sample to meet
three conflicting objectives:

1. Identify and estimate the spatial trend, Y (s) = m(s) + e(s)

2. Identify and estimate the covariance function, Y (s) = m(s) + e(s)

3. Make spatial predictions, Y (s) = m(s) + e(s)
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Purposive Sampling – Free Survey

Traditional sampling method to produce area-class soil maps

• The surveyor is free to select
the observation locations

• Selected based on conceptual
and operational factors

• Goals: learn/verify spatial
relationships and maximize the
number of observations and
geographic coverage

• Personal factors can play a role
too, e.g. motivation

A chosen observation location
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Purposive Sampling – Mixed Model

• Purposive sampling is a non-probability sampling mode

• Sampling locations are selected intentionally as to satisfy an a priori
criterion

• Based on the statistical model that will be used to infer the
structure of spatial variation of Y (s)

The modelling framework needs to be made explicit – translate objective
into a function, an objective function

• Mathematical and heuristic rules are formalized in the form of a
computer algorithm

• Find the sampling locations that minimize (or maximize) that
criterion
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An example
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Purposive Sampling – Simple Linear Regression

Suppose that we know before hand that the relation between a target
geographic phenomenon and an auxiliary variable is linear

Y (s) = β0 + β1X (s) + e(s)

• A sample is needed to estimate the parameters β0 and β1 of this
linear model with minimum variance – (XTX )−1σ2

From statistical theory: determinant of information matrix XTX

• Search for the sample configuration that maximizes |XTX |
• We now have an objective function
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Spatial Simulated Annealing
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Search for the Sample Configuration

There are various ways to search for a sample configuration that
minimizes (or maximizes) a criterion

• Exhaustive search: check all possibilities and keep the best

Exhaustive search can be VERY time consuming

Spatial simulated annealing is a reasonable alternative
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Spatial Simulated Annealing

A relatively simple algorithm that works by trial and error:

1. Start with a completely random sample configuration

2. Compute its objective function value

3. Select one sample and randomly shift its location

4. Compute the objective function value of the new sample
configuration

5. Decide whether to accept or not the new sample configuration

6. Select another sample and randomly shift its location

7. Compute the objective function value, decide whether to accept

8. Continue till the optimum sample configuration is found
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Spatial Simulated Annealing – Acceptance Probability

How to decide whether to accept or not the new sample configuration?

Metropolis criterion: acceptance probability P(X i → X i+1)

P(X i → X i+1) =

1, if f (X i+1) ≤ f (X i ),

exp
(

f (X i )−f (X i+1)
T

)
, if f (X i+1) > f (X i ),

• A better sample configuration is always accepted

• A worse sample configuration sometimes is accepted too – escape
from local optima
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Optimization – Local and Global Minima

En
er
gy

sp
ac
e

Configuration space

Global minima

Local minima

Local minima

17



Spatial Simulated Annealing – Temperature

The Metropolis criterion has a temperature parameter T

P(X i → X i+1) =

1, if f (X i+1) ≤ f (X i ),

exp
(

f (X i )−f (X i+1)
T

)
, if f (X i+1) > f (X i ),

The temperature decreases as the optimization goes on

• Worse sample configurations are more likely to be accepted in the
beginning of the optimization

• At the end of the optimization, only better sample configurations are
accepted

Also, shorter random shifts in samples as the optimization approaches its
end – the optimal solution is expected to be nearby
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Spatial Simulated Annealing – Objective Function Values

Evolution of objective function values during the optimization
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Back to Terra Incognita
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Sampling in Terra Incognita

Recall the usual spatial modelling challenge:

1. Multiple geographic phenomena have to be modelled/mapped

2. We know very little about the form of the models of spatial variation
– Terra Incognita

3. Operational constraints limit sampling to a single phase

In the mixed model context, we need an efficient spatial sample to meet
three conflicting objectives:

1. Identify and estimate the spatial trend, Y (s) = m(s) + e(s)

2. Identify and estimate the covariance function, Y (s) = m(s) + e(s)

3. Make spatial predictions, Y (s) = m(s) + e(s)
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Objective Functions
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Objective Functions and the Mixed Model

Various objective functions have already been proposed

Is there room for improvement?

• Spatial (nonlinear) trend estimation (m(s))

• Variogram estimation (e(s))

• Spatial interpolation (Y (s))

How to combine these conflicting objective functions – spatial modelling
is a multi-objective combinatorial optimization problem
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Variogram Estimation (e(s))
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Variogram Estimation (e(s))

Space Variogram space, i.e. the
unidimensional space defined by
the distances between sample
points.

Algorithm Point-pairs per lag-distance
class.

Goal Uniform distribution of
point-pairs per equidistant
lag-distance class in the
empirical variogram.

Example: six
lag-distance classes.
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Variogram Estimation (e(s))

Space Variogram space, i.e. the
unidimensional space defined by
the distances between sample
points.

Algorithm Points Per Lag-distance class
(PPL).

Goal Uniform distribution of points
per exponential lag-distance
class in the empirical variogram.

Example: six
lag-distance classes.

Se
m

iv
ar

ia
nc

e

Distance

Exponential lags.
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Variogram Estimation (e(s))

Spatial samples in a square of 500× 500.
26



Spatial Interpolation (Y (s))
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Spatial Interpolation (Y (s))

Space Geographic space, i.e. the
bi-dimensional space defined by
the boundaries of the sampling
region.

Algorithm Spatial Coverage Sampling
(k-means algorithm, SPCOSA).

Goal Minimize the overall distance
between sample and prediction
points.

Example: Regular grid
with 36 observations.

La
tit

ud
e

Longitude

Uniform coverage.
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Spatial Interpolation (Y (s))

Space Geographic space, i.e. the
bi-dimensional space defined by
the boundaries of the sampling
region.

Algorithm Mean Squared Shortest
Distance (MSSD).

Goal Minimize the overall distance
between sample and prediction
points.

Example: Regular grid
with 36 observations.

La
tit

ud
e

Longitude

Uniform coverage.
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Multi-Objective Combinatorial Optimization
Problem
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Spatial Simulated Annealing – Conflicting Objectives

Completely different sample configurations for

• Variogram identification and estimation

• Spatial interpolation

30



Multi-Objective Combinatorial Optimization Problem

When solving a MOCOP, one aims at minimizing the vector of k
objective functions

f (X ) = (f1(X ), f2(X ), . . . , fk(X )), (1)

To find a single optimum solution, one can aggregate the objective
functions into a single utility function

U =
k∑

i=1

wi fi (X ), (2)

Objective functions need to be scaled to the same approximate range of
values – eliminate any potential numerical dominance

How do we scale the objective functions?
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Spatial Simulated Annealing – Scaling

The upper-lower bound approach:

f ′′i =
fi (X )− f ◦i
f max
i − f ◦i

, (3)

f ◦i is the utopia point, the single best solution for an objective function

f max
i is the single worst solution for an objective function, the nadir point

These can be found empirically (takes time), approximated numerically
(sub-optimal) or (rarely) calculated
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Spatial (Nonlinear) Trend Estimation (m(s))
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Spatial (Nonlinear) Trend Estimation (m(s))

Space Attribute space, i.e. the
multi-dimensional space defined
by the covariates (auxiliary
variables).

Algorithm Conditioned Latin hypercube
sampling (CLHS).

Goal Reproduce (1) the marginal
distribution of the numeric and
(2) factor covariates, and (3)
the linear correlation between
numeric covariates.

Example: three samples
from two covariates with
three classes each.

A
re

a-
cl

as
s

so
il

m
ap

Land use map

A Latin square.
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Spatial (Nonlinear) Trend Estimation (m(s))

Space Attribute space, i.e. the
multi-dimensional space defined
by the covariates (auxiliary
variables).

Algorithm Association/Correlation
measure and marginal
Distribution of the Covariates
(ACDC).

Goal Reproduce (1) the marginal
distribution of the covariates,
and (2) the linear
association/correlation between
covariates.

Example: three samples
from two covariates with
three classes each.

A
re

a-
cl

as
s

so
il

m
ap

Land use map

A Latin square.
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Spatial (Nonlinear) Trend Estimation (m(s))

Numerical behaviour.
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Spatial (Nonlinear) Trend Estimation (m(s))

Optimized spatial sample configurations.
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Sampling in Terra Incognita
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Sampling in Terra Incognita

Three sampling algorithms to meet each sampling objective:

ACDC Spatial trend estimation, Y (s) = m(s) + e(s)

PPL Variogram estimation, Y (s) = m(s) + e(s)

MSSD Spatial interpolation, Y (s) = m(s) + e(s)

General-purpose method to design sample configurations1

Space Attribute, variogram, and geographic spaces.

Algorithm SPAN = w1ACDC + w2PPL + w3MSSD

Goal Uniformly cover the feature, variogram and geographic
spaces.

1https://CRAN.R-project.org/package=spsann
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Final Thoughts
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Optimization of Spatial Samples

Spatial sample optimization and simulated annealing are relatively well
known techniques

1. Existing sampling algorithms can be improved, but it is not clear if
this always translates into improved prediction accuracy.

2. Larger sample size seems to improve prediction quality irrespective
of the sampling algorithm used – is there a limit?

3. It is not clear what is the best sample configuration for highly
nonlinear models such as random forests.
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I will be happy to try answering your
questions
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